from google.colab import files
uploaded= files.upload()
Saving IMDB Dataset.csv to IMDB Dataset.csv
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import BernoulliNB
import nltk
nltk.download('stopwords')
data = pd.read_csv("IMDB Dataset.csv")
print(data.head())
[nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Unzipping corpora/stopwords.zip.
review sentiment 0 One of the other reviewers has mentioned that ... positive 1 A wonderful little production. <br /><br />The... positive 2 I thought this was a wonderful way to spend ti... positive 3 Basically there's a family where a little boy ... negative 4 Petter Mattei's "Love in the Time of Money" is... positive
import nltk
import re
nltk.download('stopwords')
stemmer = nltk.SnowballStemmer("english")
from nltk.corpus import stopwords
import string
stopword=set(stopwords.words('english'))
def clean(text):
text = str(text).lower()
text = re.sub('\[.*?\]', '', text)
text = re.sub('https?://\S+|www\.\S+', '', text)
text = re.sub('<.*?>+', '', text)
text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
text = re.sub('\n', '', text)
text = re.sub('\w*\d\w*', '', text)
text = [word for word in text.split(' ') if word not in stopword]
text=" ".join(text)
text = [stemmer.stem(word) for word in text.split(' ')]
text=" ".join(text)
return text
data["review"] = data["review"].apply(clean)
[nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date!
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
text = " ".join(i for i in data.review)
stopwords = set(STOPWORDS)
wordcloud = WordCloud(stopwords=stopwords, background_color="white").generate(text)
plt.figure( figsize=(15,10))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
x = np.array(data["review"])
y = np.array(data["sentiment"])
cv = CountVectorizer()
X = cv.fit_transform(x)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.20,
random_state=42)
from sklearn.linear_model import PassiveAggressiveClassifier
model = PassiveAggressiveClassifier()
model.fit(X_train,y_train)
PassiveAggressiveClassifier()
user = input("Enter a Text: ")
data = cv.transform([user]).toarray()
output = model.predict(data)
print(output)
Enter a Text: such a great movie! ['positive']